Complex Analysis Solutions *

Final Semester 2012-2013

Problem 1

Let $f(z)=\frac{1}{\left(z-z_{1}\right)\left(z-z_{2}\right)}$. Invoking the residue theorem, the integral

$$
\int_{\gamma} f(z) d z=2 \pi i\left(\operatorname{Res}_{f}\left(z_{1}\right)+\operatorname{Res}_{f}\left(z_{2}\right)\right)=2 \pi i\left(\frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{1}}\right)=0 .
$$

Problem 2

f is holomorphic in U. Therefore for any $z \in U$, we can write $f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)(0)}}{n!} z^{n}$.
Notice that $\int_{0}^{2 \pi} e^{i j \theta} \overline{e^{i k \theta}} d \theta=2 \pi \delta_{j=k}$. Therefore,

$$
\sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta=\sup _{0 \leq r<1} \sum_{n=0}^{\infty} r^{2 n}\left|\frac{f^{(n)}(0)}{n!}\right|^{2}=\sum_{n=0}^{\infty}\left|\frac{f^{(n)}(0)}{n!}\right|^{2}
$$

Given that f is bounded in U, therefore the l.h.s. of (??) is bounded. Hence we obtain $\sum_{n=0}^{\infty}\left|\frac{f^{(n)}(0)}{n!}\right|^{2}<\infty$.

The converse is not true in general. Consider the function defined by the power series $g(z)=z+\frac{z^{2}}{2}+\frac{z^{3}}{3}+\ldots$. The function g is well defined in U as the radius of convergence of the power series is 1 . Now $\sum_{n=0}^{\infty}\left|\frac{g^{(n)}(0)}{n!}\right|^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, where as g is not bounded in U (choose a sequence of points in the real line approaching 1).

Problem 3

Given, $p_{N}(z)=\sum_{k=0}^{N} c_{k} z^{k}, c_{N} \neq 0$ and $R=\max \left\{1, \frac{1}{\left|c_{N}\right|} \sum_{k=0}^{N-1}\left|c_{k}\right|\right\}$.
Correction in question: Replace $B(0, R)$ to 'closed ball of radius R '. Otherwise, we can choose c_{k} s such that, $c_{N}=N$ and $c_{k}=-1$ for $0 \leq k \leq N-1$. Then, $R=1$ and $z=1$ is a zero of p. From definition $R \geq 1$.

[^0]Consider the polynomial $q_{N}(z)=c_{N} z^{N}$. When $|z|=R+\epsilon>R$,

$$
\begin{aligned}
\left|p_{N}(z)-q_{N}(z)\right| & =\left|c_{N-1} z^{N-1}+\cdots+c_{0}\right| \\
& \leq\left|c_{0}\right|+\cdots+\left|c_{N-1}\right||z|^{N-1} \\
& \leq\left|c_{N}\right||z|^{N-1} R \\
& <\left|q_{n}(z)\right|
\end{aligned}
$$

Invoking Rouche's theorem we have that the for $\epsilon>0$, the polynomials p_{N} and q_{N} have same number of zeros in $B(R+\epsilon, 0)$. Therefore all the zeros of p_{N} are in the closure of the $B(R, 0)$

Problem 4

Let the f be a holomorphic function from U to U, which has a fixed point at 0 . Then f satisfies the hypothesis of Schwarz's lemma for the unit disc. Let $z_{0} \neq 0$ be the another fixed point of f. Then, $f\left(z_{0}\right)=z_{0}$. Therefore invoking Schwarz's lemma we get $f(z)=z$ for every $z \in U$.

Problem 5

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{i t x} e^{-\frac{x^{2}}{2}}=e^{-\frac{t^{2}}{2}} \int_{-\infty}^{\infty} e^{-\frac{(x-i t)^{2}}{2}} d x=e^{-\frac{t^{2}}{2}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x \tag{1}
\end{equation*}
$$

It is enough to justify the last equality of the above equation (1). Consider the contour $\gamma_{n}=\gamma_{1, n} \cup \gamma_{2, n} \cup \gamma_{3, n} \cup \gamma_{4, n}$, where,
$\gamma_{1, n}=\{-n+u: 0 \leq u \leq 2 n\}$,
$\gamma_{2, n}=\{-n-i u: 0 \leq u \leq t\}$,
$\gamma_{3, n}=\{-n-i u: t \geq u \geq 0\}$,
$\gamma_{4, n}=\{n+u: 0 \geq u \geq-2 n\}$. Consider the analytic function $f(z)=e^{-\frac{z^{2}}{2}}$. For the closed loop γ_{n}, we have

$$
\int_{\gamma_{1, n}} f(z) d z+\int_{\gamma_{2, n}} f(z) d z+\int_{\gamma_{3, n}} f(z) d z+\int_{\gamma_{4, n}} f(z) d z=\int_{\gamma_{n}} f(z) d z=0
$$

Because $|f(z)| \leq e^{-n^{2}}$, whenever $z \in \gamma_{2, n} \cup \gamma_{3, n}$, we have

$$
\lim _{n \rightarrow \infty}\left(\int_{\gamma_{2, n}} f(z) d z+\int_{\gamma_{3, n}} f(z) d z\right)=0
$$

Therefore we have

$$
\lim _{n \rightarrow \infty}\left(\int_{\gamma_{1, n}} f(z) d z+\int_{\gamma_{4, n}} f(z) d z\right)=0
$$

From here it follows that

$$
\int_{-\infty}^{\infty} e^{-\frac{(x-i t)^{2}}{2}} d x=\int_{-\infty}^{\infty} e^{-\frac{x^{2}}{2}} d x
$$

Problem 6

If f has a removable singularity at 0 , then $f(0)=\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=0$. The zero set of f has a limit point, therefore f is identically 0 . If f does not have a removable singularity and has a pole at 0 , then f cannot vanish in some neighborhood of 0 . But $f\left(\frac{1}{n}\right)=0$ for any $n \in \mathbb{N}$. Hence f cannot have a pole at 0 . This leaves that f can have an essential singularity at 0 in which case we know that the image of any neighborhood of 0 under the mapping f is dense in \mathbb{C}.

Problem 7

$$
\begin{equation*}
\text { Sum of all residues of } f=\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{p(z)}{q(z)} d z \tag{2}
\end{equation*}
$$

Because $\operatorname{deg}(q)>\operatorname{deg}(p)+1$, for R large enough we have $\left|\frac{p(z)}{q(z)}\right| \leq \frac{1}{c R^{2}}$, whenever $|z|=R$. Choosing R large the $\left|\int_{|z|=R} \frac{p(z)}{q(z)} d z\right|$ can be made as small as needed. Therefore the r.h.s. of (2) is 0 .

[^0]: *Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.

