
Complex Analysis Solutions ∗

Final Semester 2012-2013

Problem 1

Let f(z) = 1
(z−z1)(z−z2) . Invoking the residue theorem, the integral∫

γ

f(z)dz = 2πi(Resf (z1) +Resf (z2)) = 2πi
( 1

z1 − z2
+

1

z2 − z1
)

= 0.

Problem 2

f is holomorphic in U . Therefore for any z ∈ U , we can write f(z) =
∞∑
n=0

f(n)(0)

n! zn.

Notice that
2π∫
0

eijθeikθdθ = 2πδj=k. Therefore,

sup
0≤r<1

2π∫
0

|f(reiθ)|2dθ = sup
0≤r<1

∞∑
n=0

r2n
∣∣∣∣f (n)(0)

n!

∣∣∣∣2 =

∞∑
n=0

∣∣∣∣f (n)(0)

n!

∣∣∣∣2
Given that f is bounded in U , therefore the l.h.s. of (??) is bounded. Hence

we obtain
∞∑
n=0

∣∣∣ f(n)(0)
n!

∣∣∣2 <∞.

The converse is not true in general. Consider the function defined by the

power series g(z) = z+ z2

2 + z3

3 + . . . . The function g is well defined in U as the

radius of convergence of the power series is 1. Now
∞∑
n=0

∣∣∣ g(n)(0)
n!

∣∣∣2 =
∞∑
n=1

1
n2 <∞,

where as gis not bounded in U (choose a sequence of points in the real line
approaching 1).

Problem 3

Given, pN (z) =
N∑
k=0

ckz
k, cN 6= 0 and R = max{1, 1

|cN |

N−1∑
k=0

|ck|}.

Correction in question: Replace B(0, R) to ‘closed ball of radius R’. Oth-
erwise, we can choose cks such that, cN = N and ck = −1 for 0 ≤ k ≤ N − 1.
Then, R = 1 and z = 1 is a zero of p. From definition R ≥ 1.

∗Send an email to tulasi.math@gmail.com for any clarifications or to report any errors.
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Consider the polynomial qN (z) = cNz
N . When |z| = R+ ε > R,

|pN (z)− qN (z)| = |cN−1zN−1 + · · ·+ c0|
≤ |c0|+ · · ·+ |cN−1||z|N−1

≤ |cN ||z|N−1R
< |qn(z)|.

Invoking Rouche’s theorem we have that the for ε > 0, the polynomials pN
and qN have same number of zeros in B(R+ ε, 0). Therefore all the zeros of pN
are in the closure of the B(R, 0)

Problem 4

Let the f be a holomorphic function from U to U , which has a fixed point at
0. Then f satisfies the hypothesis of Schwarz’s lemma for the unit disc. Let
z0 6= 0 be the another fixed point of f . Then, f(z0) = z0. Therefore invoking
Schwarz’s lemma we get f(z) = z for every z ∈ U .

Problem 5
∞∫
−∞

eitxe−
x2

2 = e−
t2

2

∞∫
−∞

e−
(x−it)2

2 dx = e−
t2

2

∞∫
−∞

e−
x2

2 dx (1)

It is enough to justify the last equality of the above equation (1). Consider the
contour γn = γ1,n ∪ γ2,n ∪ γ3,n ∪ γ4,n, where,
γ1,n = {−n+ u : 0 ≤ u ≤ 2n},
γ2,n = {−n− iu : 0 ≤ u ≤ t},
γ3,n = {−n− iu : t ≥ u ≥ 0},
γ4,n = {n+u : 0 ≥ u ≥ −2n}. Consider the analytic function f(z) = e−

z2

2 . For
the closed loop γn, we have∫

γ1,n

f(z)dz +

∫
γ2,n

f(z)dz +

∫
γ3,n

f(z)dz +

∫
γ4,n

f(z)dz =

∫
γn

f(z)dz = 0.

Because |f(z)| ≤ e−n2

, whenever z ∈ γ2,n ∪ γ3,n, we have

lim
n→∞

(∫
γ2,n

f(z)dz +

∫
γ3,n

f(z)dz

)
= 0.

Therefore we have

lim
n→∞

 ∫
γ1,n

f(z)dz +

∫
γ4,n

f(z)dz

 = 0.

From here it follows that

∞∫
−∞

e−
(x−it)2

2 dx =

∞∫
−∞

e−
x2

2 dx.
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Problem 6

If f has a removable singularity at 0, then f(0) = lim
n→∞

f( 1
n ) = 0. The zero set

of f has a limit point, therefore f is identically 0. If f does not have a removable
singularity and has a pole at 0, then f cannot vanish in some neighborhood of
0. But f( 1

n ) = 0 for any n ∈ N. Hence f cannot have a pole at 0. This leaves
that f can have an essential singularity at 0 in which case we know that the
image of any neighborhood of 0 under the mapping f is dense in C.

Problem 7

Sum of all residues of f = lim
R→∞

∫
|z|=R

p(z)

q(z)
dz (2)

Because deg(q) > deg(p)+1, for R large enough we have
∣∣p(z)
q(z)

∣∣ ≤ 1
cR2 , whenever

|z| = R. Choosing R large the |
∫

|z|=R

p(z)
q(z)dz| can be made as small as needed.

Therefore the r.h.s. of (2) is 0.
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